Loading Events

« All Events

  • This event has passed.

Reinforcement Learning Game Tree / Markoff Chains

Tuesday, November 23, 2021 @ 5:00 PM - 6:30 PM

Prerequisites: You do not need to have attended the earlier talks. If you know zero math and zero machine learning, then this talk is for you. Jeff will do his best to explain fairly hard mathematics to you. If you know a bunch of math and/or a bunch machine learning, then these talks are for you. Jeff tries to spin the ideas in new ways. Longer Abstract: At the risk of being non-standard, Jeff will tell you the way he thinks about this topic. Both “Game Trees” and “Markoff Chains” represent the graph of states through which your agent will traverse a path while completing the task. Suppose we could learn for each such state a value measuring “how good” this state is for the agent. Then competing the task in an optimal way would be easy. If our current state is one within which our agent gets to choose the next action, then she will choose the action that maximizes the value of our next state. On the other hand, if our adversary gets to choose, he will choose the action that minimizes this value. Finally, if our current state is one within which the universe flips a coin, then each edge leaving this state will be labeled with the probability of taking it. Knowing that that is how the game is played, we can compute how good each state is. The states in which the task is complete is worth whatever reward the agent receives in the said state. These values somehow trickle backwards until we learn the value of the start state. The computational challenge is that there are way more states then we can ever look at. Speaker(s): Prof. Jeff Edmonds, Virtual: https://events.vtools.ieee.org/m/287737


Tuesday, November 23, 2021
5:00 PM - 6:30 PM
Event Categories:


Visit Website »